Researchers to tackle irrigation decision-making via USDA grant

· 3 min read

Researchers to tackle irrigation decision-making via USDA grant

Researchers with the University of Nebraska-Lincoln will use the Arable Mark IOT device to record 40 variables in Nebraska farm fields as part of a research effort to improve data farmers use to determine whether they should irrigate.
Researchers with the University of Nebraska-Lincoln will use the Arable Mark IOT device to record 40 variables in Nebraska farm fields as part of a research effort to improve data farmers use to make irrigation decisions.

A new grant that brings together researchers from Nebraska, Illinois and Princeton aims to bridge the gap between data-collection, modeling and decision-making so crop producers can more easily decide whether to irrigate. The project, funded by a $900,000 grant from the U.S. Department of Agriculture National Institute of Food and Agriculture program could potentially save both financial and water resources.

The project includes three parts, the third in which Nebraska will serve as ground zero. Trenton Franz, Derek Heeren, and Daran Rudnick, all of the University of Nebraska–Lincoln, will work with partners and producers in the state to validate remotely-collected soil moisture and weather data and to inform the design of an end-product useful to producers’ decision-making.

Kaiyu Guan, remote-sensing specialist with the University of Illinois, is leading the project, with Franz and Ming Pan, associate research hydrologist at Princeton University, acting as institutional leads.

“We have remote-sensing, modeling, and in-field data, but we want to know how best to combine and use that data to make improved decisions about irrigation,” said Franz, an associate professor in the School of Natural Resources. “Right now, the main problem is we don’t have great real-time irrigation data to help validate the remote sensing and modeling data to make it useful for decision making.”

Weather, soil and irrigation data collected via unmanned aerial vehicles, airplanes or satellites have certain problems: inopportune cloud cover, time between Earth passes, the scale — hundreds or meters across rather than at the 10s of meters needed, all which hinder the ability to make an informed decision.

Farmers have their own set of barriers. As farms progressively get bigger — in some cases 50 to 60 miles across — it becomes impossible to check the entire farm for rainfall simultaneously. Factor in that it takes three to four days for a center pivot irrigation system to complete a cycle around the field, and the end result is farmers making decisions based on a five-day period of time with inaccurate or missing information.

The researchers will spend the next three years working to refine satellite-collected data so it can be incorporated into mathematical modeling to accurately represent daily weather, crop and irrigation information; and then validate those components through field-level monitoring.

The Nebraska team, members of the School of Natural Resources and Department of Biological Systems Engineering, will work with Nebraska stakeholders to install on-the-ground crop sensors measuring 40 variables, including rainfall, solar radiation and plant health. Those variables combined will provide a water and energy budget — the information the farmer needs to make a decision — and the researchers hope to develop that information into an app or other easily-accessible product.

“Once we disseminate that out through our networks, we hope to make it better with feedback from users and with more localized data,” Franz said, “because the project leaders can look at the app, but if it’s just us, it’s not useful.”

The Nature Conservancy the Nebraska Water Balance Alliance,Nebraska Natural Resource Districts, and Nebraska Extension will partner on the project, with additional partners working with University of Illinois and Princeton University on data analysis and modeling methods.

The National Science Foundation, together with USDA-NIFA, is funding the research through the cyber-physical systems program.